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BASIC DEFINITIONS AND NOTATIONS

Let V1, ..., Vt be vector spaces over the field Fq; dim(Vi) = mi.
▶ The t-order tensor product V := V1 ⊗ ...⊗ Vt is defined as the

set of multilinear functions from V ∨
1 × ...× V ∨

t into Fq, where
V ∨

i is the dual space of Vi.
▶ Fundamental (pure or rank-1) tensors are tensors of the form

v1 ⊗ ....⊗ vt.
▶ The rank of a tensor A ∈ V is the smallest integer r such that

A =
r∑

i=1
Ai (1)

with each Ai a fundamental tensor of V .
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QUESTIONS OF INTERESTS:

▶ Algorithms: given a tensor A, does there exist an algorithm that
determines R(A) and decompose it as the sum of fundamental
tensors?

▶ Classifications: can we determine orbits of tensors under some
natural group actions:
▶ G := Stabiliser in GL(V ) of the set of rank-1 tensors.

Note:

▶ Rank(A) = Rank(λA) for A ∈ V and λ ∈ F.
▶ Determining the rank of tensors in V ⇐⇒ Determining the

rank of points in PG(V ).
▶ Example: PG(F2

q ⊗ F3
q ⊗ F3

q) ∼= PG(17, q).
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KNOWN CLASSIFICATIONS:

▶ There are 5 G-orbits of (non-zero) Tensors in F2
q ⊗ F2

q ⊗ F2
q [M.

Lavrauw, J. Sheekey, 2014].
▶ There are 8 G-orbits of (non-zero) Tensors in F2

q ⊗ F2
q ⊗ F3

q [M.
Lavrauw, J. Sheekey, 2015].

▶ There are 17 G-orbits of (non-zero) Tensors in F2
q ⊗ F3

q ⊗ F3
q [M.

Lavrauw, J. Sheekey, 2015].

F3
q ⊗ F3

q ⊗ F3
q:

q odd: progress has been made by classifying partially symmetric
tensors in F3

q ⊗ S2F3
q equivalent to planes of PG(5, q) containing at

least one rank-1 point [M. Lavrauw, T. Popiel, J. Sheekey, 2020].
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INTERESTING CONNECTIONS:

Tensors ←→ Finite geometric objects

Tensors can represent:

1. subspaces of projective spaces,

2. algebraic varieties,

3. linear systems of hypersurfaces,

4. semifields,

5. arcs.
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TENSORS AND ALGEBRAIC VARIETIES:
▶ Fundamental tensors in PG(V ) ⇐⇒ Points of the Segre variety

in PG(N, q), where N =
∏

dim(Vi)− 1.
▶ Example: σ1,2,2 : PG(F2

q)× PG(F3
q)× PG(F3

q) −→ PG(17, q)
( ⟨v1⟩, ⟨v2⟩, ⟨v3⟩ ) 7→ ⟨v1 ⊗ v2 ⊗ v3⟩.

▶ Fundamental symmetric tensors in PG(V = U ⊗ ...⊗ U) ⇐⇒
Points of the Veronese variety in PG(M, q), where
M =

(t+dim(U)−1
t

)
− 1.

▶ The Veronese surface: V(Fq) ⊂ S2,2(Fq):

ν : PG(2, q) −→ PG(5, q)
⟨(x0, x1, x2)⟩ 7→ (x2

0, x0x1, x0x2, x2
1, x1x2, x2

2).
▶ K:= Stabiliser of V(Fq).
▶ Fundamental alternating tensors in PG(V = U ⊗ ...⊗ U) ⇐⇒

Points of the Grassmann variety in PG(M, q), where
M =

(dim(U)
t

)
.
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TENSORS AND SUBSPACES OF PG(5, q):

Subspaces of PG(5, q) are points in PG(S2F3
q ⊗ Fr

q).

▶ r = 1 −→ points,
▶ r = 2 −→ lines,
▶ r = 3 −→ planes,
▶ r = 4 −→ solids,
▶ r = 5 −→ hyperplanes.
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TENSORS AND LINEAR SYSTEM OF CONICS:

Linear systems of conics := Subspaces(PG(2-forms in the projective plane)).

Subspaces of PG(5, q) correspond to linear systems of conics in PG(2, q).

▶ a pencil of conic P = ⟨C1, C2⟩ corresponds to a solid of PG(5, q).

▶ a net of conics N = ⟨C1, C2, C3⟩ corresponds to a plane of PG(5, q).

▶ a web of conicsW = ⟨C1, C2, C3, C4⟩ corresponds to a line of
PG(5, q).

▶ Classifying linear systems of conics in PG(2, q) ⇐⇒ classifying
subspaces of PG(5, q) ⇐⇒ classifying tensors in PG(S2F3

q ⊗ Fr
q).
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PREVIOUS RESULTS ON LINEAR SYSTEMS OF CONICS:

▶ Dickson (1908): Classified pencils of conics over Fq, q odd.
▶ Wilson (1914): Incompletely classified rank-one nets of conics

(nets with at least a //) over Fq, q odd.
▶ Campbell (1927): Incompletely classified pencils of conics over

Fq, q even.
▶ Campbell (1928): Incompletely classified nets of conics over Fq,

q even.
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PREVIOUS RESULTS ON ORBITS OF SUBSPACES OF

PG(5, q):

▶ points, hyperplanes, for all q: !
▶ lines, for all q: ! ( =⇒ solids, for q odd: !)

[M. Lavrauw, T. Popiel, 2020]
▶ planes meeting V(Fq) non-trivially, for q odd: !

[M. Lavrauw, T. Popiel, J. Sheekey, 2020]
▶ solids, for q even: !

[N. Alnajjarine, M. Lavrauw, T. Popiel, 2022]
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PG(5, odd) VS PG(5, even):

▶ q odd: ∃ a polarity: the set of conic planes of V(Fq)→ the set of
tangent planes of V(Fq).

▶ lines
polarity⇐===⇒ solids.

▶ N = ⟨C1, C2, C3⟩; C1 = // −→
π = H1 ∩H2 ∩H3

polarity−−−−→
π′ = ⟨P1, P2, P3⟩; P1 ∈ V(Fq) −→
Rank-one nets of conics ⇐⇒ planes meeting V(Fq)
non-trivially.

▶ q even: No such polarity −→
▶ lines ?⇐⇒ solids.
▶ Rank-one nets of conics ?⇐⇒ planes meeting V(Fq)

non-trivially.
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REPRESENTATION OF SUBSPACES OF PG(5, q):

▶ PG(5, q) = ⟨V(Fq)⟩.
▶ Every point x = (x0, .., x5) ∈ PG(5, q) can be represented by

Mx =

x0 x1 x2
x1 x3 x4
x2 x4 x5


▶ The plane in PG(5, q) spanned by the 1st three points of the

standard frame is

π =

[
x y z
y . .
z . .

]
:= {

[
x y z
y 0 0
z 0 0

]
: (x, y, z) ∈ F3

q; (x, y, z) ∈ PG(2, q)}.

Planes of PG(5, q) and cubic curves in PG(2, q)
π −→ C = Z(determinant of its matrix representation).
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K-ORBITS INVARIANTS:
Let W be a subspace of PG(5, q), K:=Setwise stabiliser of V(Fq) in
PGL(6, q).
Let U1, U2,...,Um denote the distinct K-orbits of r-spaces in
PG(5, q).
▶ The rank distribution of W is

[r1, r2, r3]

where

ri = # of rank i points in W .
▶ The r-space orbit-distribution of W is

[u1, u2, . . . , um],

where

ui = # of r-spaces incident with W which belong to the orbit Ui.
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PROPERTIES AND APPROACH:
▶ Approach: We study the possible Point-orbit distributions and

discuss the possibility of planes with same Point-OD to split or
not under the action of K.

▶ Lemma: Planes with rank distribution [1, 0, q2 + q] and
[2, r2 < q, r3] do not exist.

▶ Rank-2 points: The geometry associated with rank-1,2 points
can help! (π = ⟨Q1, Q2, ?⟩, where rank(Q1) = 1 and
rank(Q2) = 2).

ν
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LINES IN PG(5, q), q EVEN:

Orbits Point-OD’s : [r1, r2n, r2s, r3]
o5 [2, 0, q − 1, 0]
o6 [1, 1, q − 1, 0]
o8,1 [1, 0, 1, q − 1]
o8,2 [1, 1, 0, q − 1]
o9 [1, 0, 0, q]
o10 [0, 0, q + 1, 0]
o12,1 [0, q + 1, 0, 0]
o12,2 [0, 1, q, 0]
o13,1 [0, 1, 1, q − 1]
o13,2 [0, 0, 2, q − 1]
o14 [0, 0, 3, q − 2]
o15 [0, 0, 1, q]
o16,1 [0, 1, 0, q]
o16,2 [0, 0, 1, q]
o17 [0, 0, 0, q + 1]

Table: K-orbits of lines in PG(5, q), q even [M. Lavrauw, T. Popiel, 2020].
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THE STRUCTURE OF DISCUSSION:

π

r1 ≥ 3 r1 = 2 r1 = 1

π = ⟨pts of rank ≤ 2⟩ π ̸= ⟨pts of rank ≤ 2⟩

r2n = 0r2n ̸= 0

2 orbits 3 orbits

1 orbit

5 orbits 4 orbits
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THE CASE r2n = 0:

π = ⟨Q1, Q2, Q3⟩: rank(Q1) = 1, rank(Qi) = 2, i = 2, 3, and
π ∩N = ∅.
▶ CQ2 = CQ3 : Q1 ∈ CQ2 or Q1 ̸∈ CQ2 → Σ6.
▶ Q1 = U = CQ2 ∩ CQ3 .
▶ Q1 ∈ CQ2 \ CQ3 .
▶ Q1 ̸∈ CQ2 ∪ CQ3 :

▶ ⟨Q2, Q3⟩ ∈ o13,2 : [0, 0, 2, q − 1] ⇐⇒ Q2 ∈ TU (CQ2) and
Q3 ̸∈ TU (CQ3), and

▶ ⟨Q2, Q3⟩ ∈ o14 : [0, 0, 3, q − 2] ⇐⇒ Q2 ̸∈ TU (CQ2) and
Q3 ̸∈ TU (CQ3).



18 / 28

THE ORBITS Σ12, Σ13 AND Σ14:
▶ π = ⟨Rep of o13,2, Q1⟩; Q1 = ν(a, b, c)→
⟨Q1, Qi⟩ ∈ o8,1 : [1, 0, 1, q − 1] and thus a, c ̸= 0

πc =

 x y cx
y y + z .
cx . c2x + z


▶ The cubic curve associated with πc is:

Cc = x(z2 + yz + c2y2) + y2z.

▶ The Hessian of Cc is:

C ′′
c = x(z2 + yz + c2y2) + z3 + (1 + c2)y2z + c2y3.

▶ Let y = 1 and θ = c−1z: inflexion points of Cc correspond to
solutions of θ3 + θ + c−1 = 0.

▶ Inflexion points of planes of PG(5, q) are inflexion points of
their associated cubic curves in PG(2, q).
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Cubic equations over F2h , (Berlekamp, Rumsey, Solomon,
1966)

θ3 + θ + c−1 = 0,

▶ has three solutions if and only if q ̸= 4, Tr(c) = Tr(1) and c−1

is admissible: c−1 = v+v−1

(1+v+v−1)3 for some v ∈ Fq \ F4,

▶ a unique solution if and only if Tr(c) ̸= Tr(1) and
▶ no solution if and only if Tr(c) = Tr(1) and c−1 is not

admissible

Characterization:

▶ Three inflexions→ Σ14; q ̸= 4.
▶ A unique inflexion point→ Σ12 (q = 2even) or Σ13 (q = 2odd).
▶ No inflexion points→ Σ12 (q = 2odd) or Σ13 (q = 2even).
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THE UNIQUENESS OF Σ14:

Σ14 := the union of K-orbits of planes represented by πc where
h > 2, Tr(c) = Tr(1) and c−1 is admissible.

Proof:
Let L (the inflexion line) be parametrised by (0, 1, 0), (0, 0, 1) and
(0, 1, 1) respectively and Qa,b,c = ν(a, b, c). Then,

πa,b,c = ⟨L, Qa,b,c⟩ ∈ Σ14.

If follows that ⟨Qa,b,c, Ei⟩ ∈ o8,1; 1 ≤ i ≤ 3, and thus a, b, c ̸= 0.

πb,c :

x + y bx cx
bx b2x + y + z bcx
cx bcx c2x + z

 .
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▶ 1 + b + c = 0,→ #.
▶ 1 + b + c ̸= 0, C ′′

b,c = Z(hb,c), α = (1 + b2 + c2) and
hb,c = c2α5xy2 +α5xz2 +c2(1+b2)αy3 +α((1+b2)+α3(b2 +
c2))yz2 + α(c2(b2 + c2) + α3(1 + b2))y2z + (b2 + c2)αz3.
Imposing the conditions: Ei ∈ C ′′

b,c; 1 ≤ i ≤ 3, implies that
c2(1 + b2)α = (b2 + c2)α = c2(1 + b2)α + α((1 + b2) +
α3(b2 + c2)) + α(c2(b2 + c2) + α3(1 + b2)) + (b2 + c2)α = 0.
As α, c ̸= 0, we get b = c = 1.

Conclusion:
Φ14: Σ14 −→ o14 : π 7→ L is a bijection.
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UNIQUENESS OF Σ12, Σ13:

q = 2even:

▶ π ∈ Σ12 has a unique inflexion point
Fq2
−→ π(Fq2) ∈ Σ14 −→

L(Fq2) ⊂ PG(5, q2) is the unique inflexion line in π(Fq2) −→
Ls = L(Fq2) ∩ π ∈ {o15, o16,2}. Since o16,2 cannot split by
extension, Ls ∈ o15.

▶ Φ12: Σ12 −→ o15 : π 7→ Ls is a bijection (o15 : [0, 0, 1, q]).
▶ Similarly, we can extend our work to Fq3 to conclude Φ13:

Σ13 −→ o17 : π 7→ Ls is a bijection (o17 : [0, 0, 0, q + 1]).
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K-orbits of planes Representatives Point-OD Condition(s)

Σ1

[
x y .
y z .
. . .

]
[q + 1, 1, q2 − 1, 0]

Σ2

[
x . .
. y .
. . z

]
[3, 0, 3q − 3, q2 − 2q + 1]

Σ3

[
x . z
. y .
z . .

]
[2, 1, 2q − 2, q2 − q]

Σ4

[
x . z
. y z
z z .

]
[2, 1, 2q − 2, q2 − q]

Σ5

[
x . z
. y z
z z z

]
[2, 0, 2q − 2, q2 − q + 1]

Σ6

[
x . .
. y + cz z
. z y

]
[1, 0, q + 1, q2 − 1] T r(c−1) = 1

Σ7

[
x y z
y . .
z . .

]
[1, q + 1, q2 − 1, 0]

Σ8

[
x y .
y . z
. z .

]
[1, q + 1, q − 1, q2 − q]
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Σ9

[
x y .
y z z
. z .

]
[1, 1, 2q − 1, q2 − q]

Σ10

[
x y .
y z .
. . z

]
[1, 1, 2q − 1, q2 − q]

Σ11

[
x y .
y z z
. z x + z

]
[1, 1, q − 1, q2]

Σ12

[
x y cx
y y + z .

cx . c2x + z

]
[1, 0, q + 1, q2 − 1] T r(c) = 1, (∗)

Σ13

[
x y cx
y y + z .

cx . c2x + z

]
[1, 0, q − 1, q2 + 1] T r(c) = 0, (∗∗)

Σ14

[
x y cx
y y + z .

cx . c2x + z

]
[1, 0, q ∓ 1, q2 ± 1] T r(c) = T r(1), q ̸= 4, (∗ ∗ ∗)

Σ′
14

[
x + z z z

z y + z z
z z y

]
[1, 0, q − 1, q2 + 1] q = 4

Σ15

[
x y z
y z .
z . .

]
[1, 1, q − 1, q2]
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COMPARISON WITH THE q ODD CASE:

Rank-one nets of conics ⇍⇒ planes meeting V(Fq) non-trivially.

π6 ∈ Σ6 meets V(Fq) in a unique point, however its associated net of
conics N6 defined by

αX0X1 + βX0X2 + γ(X2
1 + cX1X2 + X2

2 ) = 0
has q + 1 pairs of real lines defined by the pencil

Z(X0X1, X0X2) (∈ Ω4),
and a unique pair of conjugate imaginary lines given by

Z(X2
1 + cX1X2 + X2

2 ),
implying that N6 is not a rank-1 net of conics.

Planes meeting V(Fq) non-trivially ⇐⇒ Nets of conics in PG(2, q)
with a non-empty base.
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TO SUM UP:

1. There is an interesting interplay between tensors and geometric
objects.

2. There are 15 K-orbits of planes having at least one rank-1 point
in PG(5, q) and 5 when q = 2.

3. Unlike the q odd case, rank-one nets of conics ⇍⇒ planes
meeting V(Fq) non-trivially, q even.

4. Planes meeting V(Fq) non-trivially ⇐⇒ Nets of conics in
PG(2, q) with a non-empty base.

5. Planes of type Σ14 (resp. {Σ12, Σ13}) ⇐⇒ Lines of type o14
(resp. {o15, o17}).

6. Remaining part of the classification: planes disjoint from V(Fq),
for all q.
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Thank you!
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