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Geometric Group Theory

AMALGAMATED PRODUCT

A, B, C groups
f:C—A, g:C—B
= AxcB=(A,B|VceC:f(c)=g(c))

Non-trivial if neither f nor g are surjections.
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EXAMPLE 2

C,4 * C3 acts on the tree:
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Stabilizer of P is C4 and the stabilizer of Q is C3. The stabilizer of
y is the trivial group.



Geometric Group Theory

AMALGAMATED PRODUCT CONT.

Theorem (Serre '68)

P Q
A group I acts on a tree with as fundamental domain @——e if

and only if there exist groups A, B and C such that T = A x¢ B.
Moreover, in this case, A = I'p, B = T'q and C = T, the stabilizers
in T of P, Q and y respectively.
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Torsion elements of Ax¢ are conjugate to elements of A.
Torsion elements of A ¢ B are conjugate to elements of A or B.

Definition (Property (FA))

A group I is said to have property (FA) if every -action on a tree,
without inversion, has a global fix point.
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Lemma (Serre, '68)
For a finitely generated group T holds

I has property (FA) < » I is not a HNN extension
» [ is not an amalgamated product

V.
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WHAT ARE GROUP RINGS?

Definition (Group Ring)

Let (G, .) be a group and (R, +, .) an unital ring. The group ring RG
has as additive structure the free R-module on the abstract
symbols of G. The multiplication is defined to be the R-linear
expansion of the product in the group G.

RG = {Z agg | ag € R, ag 7 0 for only finitely many g's}
geG
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| GiousRnos |

Let G be a finite group. When does U(ZG) have (FA)?
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Group Rings
THE PROBLEM WITH (FA)...

Let K be a finite index subgroup of T, then

K has (FA) = T has (FA)

SL, (Z F * FD has (FA)
|

f.i.

SL, (Z {\QD does not have (FA)
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Group Rings

THE SOLUTION

Definition (Property (HFA))

A group T is said to have property (HFA) if every finite index
subgroup has property (FA).

v

Let K be a finite index subgroup of T, then

K has (HFA) < T has (HFA)

A




Group Rings
(HFA) INSTEAD OF (FA)

Let G be a finite group. When does U(ZG) have (HFA)?

Idea: reduction to special linear groups SL,(O) over orders, i.e. a
subring of a Q-algebra which is a free Z-module and contains a
Q-basis for the algebra.
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Group Rings
PROPERTY (HFA) FOR U(ZG)

Theorem (Bachle-Janssens-Jespers-Kiefer-T.)

U(ZG) has (HFA) < Gis a cut group and does not have an
epimorphic image in a specific list
of 10 groups
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Group Rings
PROPERTY (HFA) FOR U(ZG)

Theorem (Bachle-Janssens-Jespers-Kiefer-T.)

U(ZG) has (HFA) <

(I

G is a cut group and does not have an
epimorphic image in a specific list

of 10 groups

U(ZG) has Kazhdan’s property (T)

All finite index subgroups of U(ZG)
have finite abelianization
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