Group Rings and Geometry: The (FA) Property

Finite Geometry & Friends

Doryan Temmerman

Joint work with A. Bächle, G. Janssens, E. Jespers and A. Kiefer

June 19, 2019

Group Rings and Geometry: The (FA) Property

Finite Geometry & Friends

Doryan Temmerman

Joint work with A. Bächle, G. Janssens, E. Jespers and A. Kiefer

June 19, 2019

Geometric Group Theory

HNN EXTENSION

$$B \leq A$$
 groups

$$f: B \hookrightarrow A$$

$$\Rightarrow A*_f = \langle A, t \mid \forall b \in B : b^t = f(b) \rangle$$

HNN EXTENSION

$$B \le A$$
 groups

$$f:B\hookrightarrow A$$

$$\Rightarrow A*_f = \langle A, t \mid \forall b \in B : b^t = f(b) \rangle$$

 Γ is a HNN extension

$$\Rightarrow |\Gamma^{ab}| = \infty$$

$$\Rightarrow \exists T$$
 on which Γ acts such that T/Γ =

HNN EXTENSION

$$B \leq A$$
 groups

$$f: B \hookrightarrow A$$

$$\Rightarrow A*_f = \langle A, t \mid \forall b \in B : b^t = f(b) \rangle$$

Γ is a HNN extension

$$\Rightarrow |\Gamma^{ab}| = \infty$$

 \Rightarrow Γ is a HNN extension

AMALGAMATED PRODUCT

$$A,B,C$$
 groups
$$f:C\hookrightarrow A, \qquad g:C\hookrightarrow B$$
 $\Rightarrow A*_CB=\langle A,B\mid \forall c\in C:f(c)=g(c)\rangle$

Non-trivial if neither f nor g are surjections.

Geometric Group Theory

EXAMPLE 2

Geometric Group Theory

EXAMPLE 2

Geometric Group Theory

EXAMPLE 2

 $C_4 * C_3$ acts on the tree:

Stabilizer of P is C_4 and the stabilizer of Q is C_3 . The stabilizer of y is the trivial group.

AMALGAMATED PRODUCT CONT.

Theorem (Serre '68)

A group Γ acts on a tree with as fundamental domain $\stackrel{P}{\bullet} \stackrel{y}{\bullet} \stackrel{Q}{\bullet}$ if and only if there exist groups A, B and C such that $\Gamma \cong A *_C B$. Moreover, in this case, $A \cong \Gamma_P$, $B \cong \Gamma_Q$ and $C \cong \Gamma_y$, the stabilizers in Γ of P, Q and Y respectively.

TORSION ELEMENTS AND PROPERTY (FA)

Fact

Torsion elements of $A*_f$ are conjugate to elements of A. Torsion elements of $A*_C B$ are conjugate to elements of A or B.

TORSION ELEMENTS AND PROPERTY (FA)

Fact

Torsion elements of $\mathbf{A} *_{\mathbf{f}}$ are conjugate to elements of \mathbf{A} . Torsion elements of $\mathbf{A} *_{\mathbf{C}} \mathbf{B}$ are conjugate to elements of \mathbf{A} or \mathbf{B} .

Definition (Property (FA))

A group Γ is said to have property (FA) if every Γ -action on a tree, without inversion, has a global fix point.

TORSION ELEMENTS AND PROPERTY (FA)

Fact

Torsion elements of $\mathbf{A} *_{\mathbf{f}}$ are conjugate to elements of \mathbf{A} . Torsion elements of $\mathbf{A} *_{\mathbf{C}} \mathbf{B}$ are conjugate to elements of \mathbf{A} or \mathbf{B} .

Definition (Property (FA))

A group Γ is said to have property (FA) if every Γ -action on a tree, without inversion, has a global fix point.

Lemma (Serre, '68)

For a finitely generated group Γ holds

 Γ has property (FA) \Leftrightarrow Γ is not a HNN extension

 $ightharpoonup \Gamma$ is not an amalgamated product

Group Rings

WHAT ARE GROUP RINGS?

Definition (Group Ring)

Let (G, .) be a group and (R, +, .) an unital ring. The group ring RG has as additive structure the free R-module on the abstract symbols of G. The multiplication is defined to be the R-linear expansion of the product in the group G.

$$RG = \left\{ \sum_{g \in G} a_g g \mid a_g \in R, \ a_g \neq 0 \text{ for only finitely many } g's \right\}$$

WHAT ARE GROUP RINGS?

Definition (Group Ring)

Let (G, .) be a group and (R, +, .) an unital ring. The group ring RG has as additive structure the free R-module on the abstract symbols of G. The multiplication is defined to be the R-linear expansion of the product in the group G.

$$RG = \left\{ \sum_{g \in G} a_g g \mid a_g \in R, \ a_g \neq 0 \text{ for only finitely many } g's \right\}$$

Group Rings
PROJECT

Question

Let **G** be a finite group. When does $\mathcal{U}(\mathbb{Z}G)$ have (FA)?

THE PROBLEM WITH (FA)...

Fact

Let K be a finite index subgroup of Γ , then

$$\textit{K}$$
 has (FA) \Rightarrow Γ has (FA)

THE PROBLEM WITH (FA)...

Fact

Let K be a finite index subgroup of Γ , then

$$K has (FA) \Rightarrow \Gamma has (FA)$$

THE SOLUTION

Definition (Property (HFA))

A group Γ is said to have property (HFA) if every finite index subgroup has property (FA).

Fact

Let K be a finite index subgroup of Γ , then

K has (HFA) \Leftrightarrow Γ has (HFA)

Group Rings
(HFA) INSTEAD OF (FA)

Question

Let **G** be a finite group. When does $\mathcal{U}(\mathbb{Z}\mathbf{G})$ have (HFA)?

Idea: reduction to special linear groups $\mathrm{SL}_n(\mathcal{O})$ over <u>orders</u>, i.e. a subring of a \mathbb{Q} -algebra which is a free \mathbb{Z} -module and contains a \mathbb{Q} -basis for the algebra.

PROPERTY (HFA) FOR $\mathcal{U}(\mathbb{Z}G)$

Theorem (Bächle-Janssens-Jespers-Kiefer-T.)

 $\mathcal{U}(\mathbb{Z}G)$ has (HFA) \Leftrightarrow G is a cut group and does not have an epimorphic image in a specific list of 10 groups

PROPERTY (HFA) FOR $\mathcal{U}(\mathbb{Z}G)$

Theorem (Bächle-Janssens-Jespers-Kiefer-T.)

- $\mathcal{U}(\mathbb{Z}G)$ has (HFA) \Leftrightarrow G is a cut group and does not have an epimorphic image in a specific list of 10 groups
 - $\Leftrightarrow \mathcal{U}(\mathbb{Z}G)$ has Kazhdan's property (T)

PROPERTY (HFA) FOR $\mathcal{U}(\mathbb{Z}G)$

Theorem (Bächle-Janssens-Jespers-Kiefer-T.)

- $\mathcal{U}(\mathbb{Z}G)$ has (HFA) \Leftrightarrow **G** is a cut group and does not have an epimorphic image in a specific list of **10** groups
 - $\Leftrightarrow \mathcal{U}(\mathbb{Z}G)$ has Kazhdan's property (T)
 - \Leftrightarrow All finite index subgroups of $\mathcal{U}(\mathbb{Z}G)$ have finite abelianization