PD-sets for codes related to flag-transitive symmetric designs

Nina Mostarac (nmavrovic@math.uniri.hr)
Dean Crnković (deanc@math.uniri.hr)

Department of Mathematics, University of Rijeka, Croatia Supported by CSF (Croatian Science Foundation), Grant 6732

Finite Geometry & Friends
A Brussels summer school on finite geometry

June 18, 2019

- permutation decoding was introduced in 1964 by MacWilliams
 - it uses sets of code automorphisms called PD-sets
- the problem of existence of PD-sets and finding them
- we will prove the existence of PD-sets for all codes generated by the incidence matrix of an incidence graph of a flag-transitive symmetric design and construct some examples

- D. Crnković, N. Mostarac, PD-sets for codes related to [1] flag-transitive symmetric designs, *Trans. Comb.*, **7** (2018) 37–50.
- [2] P. Dankelmann, J.D. Key and B.G. Rodrigues, Codes from incidence matrices of graphs, *Des. Codes Cryptogr.*, **68** (2013) 373-393.
 - for prime p let $C_p(G)$ be the p-ary code spanned by the rows of the incidence matrix G of a graph Γ
 - we will show that if Γ is the **incidence graph** of a flag-transitive symmetric design D, then any flag-transitive automorphism group of D can be used as a PD-set for full error correction for the linear code $C_p(G)$ (with any information set)

Let p be a prime. A p-ary linear code C of length n and dimension k is a k-dimensional subspace of the vector space $(\mathbb{F}_p)^n$.

Definition 2

- Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n) \in \mathbb{F}_p^n$. The Hamming distance between words x and y is the number $d(x, y) = |\{i : x_i \neq y_i\}|$.
- The **minimum distance** of the code C is defined by $d = \min\{d(x, y) : x, y \in C, x \neq y\}.$
- Notation: [n, k, d]_p code
- it can detect at most d-1 errors in one codeword and correct at most $t=\left|\frac{d-1}{2}\right|$ errors

Graphs

We will discuss undirected graphs, with no loops and multiple edges.

Definition 3

Edge connectivity $\lambda(\Gamma)$ of a connected graph Γ is the minimum number of edges that need to be removed to disconnect the graph.

Remark 1

For every graph Γ : $\lambda(\Gamma) \leq \delta(\Gamma)$.

Let G be the incidence matrix of a graph $\Gamma = (V, E)$ over \mathbb{F}_p , p prime and the code $C_p(G)$ the row-span of G over \mathbb{F}_p .

Theorem 2.1 (Dankelmann, Key, Rodrigues [2](Result 1))

Let $\Gamma = (V, E)$ be a connected graph and G its incidence matrix. Then:

- 1 $dim(C_2(G)) = |V| 1;$
- 2 for odd p, $dim(C_p(G)) = |V|$ if Γ is not bipartite, and $dim(C_p(G)) = |V| 1$ if Γ is bipartite.

Theorem 2.2 (Dankelmann, Key, Rodrigues [2](Theorem 1))

Let $\Gamma = (V, E)$ be a connected graph, G a $|V| \times |E|$ incidence matrix for G. Then:

- **1** $C_2(G)$ is a $[|E|, |V| 1, \lambda(\Gamma)]_2$ code;
- 2 if Γ is super- λ , then $C_2(G)$ is a $[|E|, |V| 1, \delta(\Gamma)]_2$ code, and the minimum words are the rows of G of weight $\delta(\Gamma)$.

Theorem 2.3 (Dankelmann, Key, Rodrigues [2](Theorem 2))

Let $\Gamma = (V, E)$ be a connected **bipartite** graph, G a $|V| \times |E|$ incidence matrix for G, and p an **odd** prime. Then:

- 1 $C_p(G)$ is a $[|E|, |V| 1, \lambda(\Gamma)]_p$ code;
- 2 if Γ is super- λ , then $C_p(G)$ is a $[|E|, |V| 1, \delta(\Gamma)]_p$ code, and the minimum words are the non-zero scalar multiples of the rows of G of weight $\delta(\Gamma)$.

Theorem 2.4 (Dankelmann, Key, Rodrigues [2](Result 3))

Let $\Gamma = (V, E)$ be a connected bipartite graph. Then $\lambda(\Gamma) = \delta(\Gamma)$ if one of the following conditions holds:

- 1 V consists of at most two orbits under Aut(Γ), and in particular if Γ is vertex-transitive;
- 2 every two vertices in one of the two partite sets of Γ have a common neighbour;
- 3 $diam(\Gamma) \leq 3$;
- **4** Γ is k-regular and $k \geq \frac{n+1}{4}$;
- **5** Γ has girth g and diam(Γ) < g-1.

Let $C \subseteq \mathbb{F}_p^n$ be a linear [n, k, d] code. For $I \subseteq \{1, ..., n\}$ let $p_l: \mathbb{F}_p^n \to \mathbb{F}_p^{|I|}, x \mapsto x|_I$, be an *I*-projection of \mathbb{F}_p^n . Then *I* is called an information set for C if |I| = k and $p_I(C) = \mathbb{F}_p^{|I|}$.

The set of the first k coordinates for a code with a generating matrix in the standard form is an information set.

Let $C \subseteq \mathbb{F}_p^n$ be a linear [n, k, d] code that can correct at most t errors, and let I be an information set for C. A subset $S \subset AutC$ is called a PD-set for C if every t-set of coordinate positions can be moved by at least one element of S out of the information set I.

A lower bound on the size of a PD-set:

Theorem 3.1 (The Gordon bound)

If S is a PD-set for an [n, k, d] code C that can correct t errors, r = n - k. then:

$$|S| \ge \left\lceil \frac{n}{r} \left\lceil \frac{n-1}{r-1} \left\lceil \cdots \left\lceil \frac{n-t+1}{r-t+1} \right\rceil \cdots \right\rceil \right\rceil \right\rceil.$$

A symmetric (v, k, λ) -design is an incidence structure D = (P, B, I) which consists of the set of points P, the set of blocks B and an incidence relation I such that:

- |P| = |B| = v,
- every block is incident with exactly k points
- and every pair of points is incident with exactly λ blocks $(\lambda > 0)$.

A symmetric (v, k, 1)-design is called a projective plane of order k-1, and a symmetric (v, k, 2)-design is called a biplane.

Incidence graph of a symmetric design

Definition 7

An incidence graph or a Levi graph of a symmetric design is a graph whose vertices are points and blocks of the design, and edges are incident point-block pairs (flags).

Remark 2

An incidence graph Γ of a symmetric (v, k, λ) -design:

- is bipartite.
- is k-regular,
- has diameter diam(Γ) = 3.

Flag transitive symmetric designs

Definition 8

- An automorphism of a symmetric design is a permutation of points which sends blocks to blocks.
- An automorphism group of a symmetric design D is called flag-transitive if it is transitive on flags of D.

Theorem 3.2 (Dankelmann, Key, Rodrigues [2](Result 7))

Let $\Gamma = (V, E)$ be a k-regular graph with the automorphism group A transitive on edges and let G be an incidence matrix of Γ . If $C = C_p(G)$ is a $[|E|, |V| - \varepsilon, k]_p$ code, where p is a prime and $\varepsilon \in \{0, 1, ... |V| - 1\}$, then any transitive subgroup of A is a PD-set for full error correction for C.

Theorem 3.3 (D.C., N.M.)

Let $\Gamma = (V, E)$ be an incidence graph of a symmetric (v, k, λ) -design D with flag-transitive automorphism group A and let G be an incidence matrix for Γ . Then $C = C_p(G)$ is a $[|E|, |V| - 1, k]_p$ code, for any prime p, and any flag transitive subgroup of A can serve as a PD-set (for any information set) for full error correction for the code C.

Examples

- for the following computational results we use programming packages GAP and Magma
- examples of flag-transitive projective planes
- 2 examples of flag-transitive biplanes

Parameters of the linear $[n, k, d]_p$ code obtained from a flag-transitive symmetric (v, k', λ) -design in the described way are:

- $n = v \cdot k'$
- k = 2v 1
- d = k'

Flag-transitive projective planes

i	Flag-	Code	Gordon	Orders of all	Smallest
	transitive	$C_p(G_i)$	bound	flag-transitive	PD-set
	projective		g_i	subgroups of	found
	plane D_i			autom. group A _i	in <i>A_i</i>
1	(7, 3, 1)	[21,13,3]	3	21,168	4
2	(13, 4, 1)	[52,25,4]	2	5616	4
3	(21, 5, 1)	[105,41,5]	4	20160, 40320,	64
				60480, 120960	

Flag-transitive biplanes

		Flag-transitive symmetric	Code	Gordon	Orders of all
	i	design D_i , full automorphism	$C_p(G_i)$	bound	flag-transitive
		group A_i , point stabilizer		g i	subgroups of A_i
4 5		$(4,3,2), S_4, S_3$	[12, 7, 3]	3	12, 24
		(7, 4, 2), PSL ₂ (7), S ₄	[28, 13, 4]	2	168
	6	(11,5,2), <i>PSL</i> ₂ (11), <i>A</i> ₅	[55, 21, 5]	4	55, 660
					96, 192, 288,
	7	$(16,6,2), 2^4S_6, S_6$	[96, 31, 6]	3	384, 576, 768,
					960, 1152, 1920,
					5760, 11520
	8	$(16,6,2), (\mathbb{Z}_2 \times \mathbb{Z}_8)(S_2.4),$	[96, 31, 6]	3	384, 768
		$(S_2.4)$			

Flag-transitive biplanes

i	Flag-transitive	Code	Gordon	Smallest PD-set
	design <i>D_i</i>	$C_2(G_i)$	bound g_i	found in A_i
4	(4, 3, 2)	[12,7,3]	3	3
5	(7,4,2)	[28,13,4]	2	3
6	6 (11,5,2)	[55,21,5]	4	10
7	(16, 6, 2)	[96,31,6]	3	12
8	(16, 6, 2)	[96,31,6]	3	9

Thank you!