PROBABILITIES OF INCIDENCE BETWEEN LINES AND A PLANE CURVE OVER FINITE FIELDS

Radon Institute For Computation and Applied Mathematics

June 19, 2019

Definition

Let X be an algebraic curve over a field K. We say that X is *geometrically irreducible* if X is irreducible over \overline{K} . Here \overline{K} denotes the algebraic closure of K.

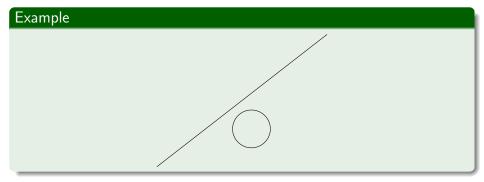
Example (non-geometrically irreducible curve)

Consider the curve C given by

$$C := x^2 + y^2 = 0,$$

C is irreducible over real numbers but it is not irreducible over complex numbers. i.e $x^2 + y^2 = (x + iy)(x - iy) = 0$.

If C is an irreducible algebraic curve of degree d, by Bézout's theorem every line intersects C in d points (over an algebraically closed field). We can see that if the base field is not algebraically closed then we can get less than d intersection points.



Given an algebraic curve C over a finite field \mathbb{F}_q we would like to study the behaviour of the number of k-rich lines determined by the set of points corresponding to the some algebraic plane curve from a probabilistic point of view.

What is the probability that a random line in the (affine or projective) plane intersects a curve of given degree in a given number of points? What happens when we extend the base field to \mathbb{F}_{q^2} , \mathbb{F}_{q^3} ,..., \mathbb{F}_{q^N} , and in particular what happens to the probabilities as $N \to \infty$.

Example

Let C be an irreducible quadratic curve in $\mathbb{P}^2(\mathbb{F}_q)$. It is known that C contains exactly q+1 \mathbb{F}_q -points. Hence the number of lines that meets C in exactly two points is

$$\binom{q+1}{2}$$
.

On the other hand every tangent line touches C in exactly one point, hence there are q+1 lines in $\mathbb{P}^2(\mathbb{F}_q)$ that intersects C in exactly one point. By a straight forward calculation since the total number of lines in the projective plane is q^2+q+1 , we expect that the number of lines that do not meet C to be

$$\frac{q(q-1)}{2}$$
.

Now if we replace \mathbb{F}_q with \mathbb{F}_{q^N} for $N=1,2,3,\ldots$, then we have

$$t_2=rac{q^N(q^N+1)}{2},\ t_1=q^N+1,\ t_0=rac{q^N(q^N-1)}{2}.$$

Since the total number of lines in $\mathbb{P}^2(\mathbb{F}_{q^N})$ is $q^{2N}+q^N+1$. We conclude

$$p_2(C) = \frac{1}{2}, p_1 = 0, p_0 = \frac{1}{2}.$$

We would like to control this behaviour for an arbitrary curve.

Definition (Probabilities of intersection)

Let q be a prime power and let $C \subseteq \mathbb{P}^2(\mathbb{F}_q)$ be a geometrically irreducible curve of degree d defined over \mathbb{F}_q . For every $N \in \mathbb{N}$ and for every $k \in \{0, \ldots, d\}$, the k-th probability of intersection $p_k^N(C)$ of lines with C over \mathbb{F}_{q^N} is

$$ho_k^N(\mathcal{C}) := rac{\left|\left\{ ext{lines } \ell \subseteq \mathbb{P}^2(\mathbb{F}_{q^N}) \,:\, |\ell(\mathbb{F}_{q^N}) \cap \mathcal{C}(\mathbb{F}_{q^N})| = k
ight\}
ight|}{q^{2N} + q^N + 1}\,.$$

Notice that $q^{2N}+q^N+1$ is the number of lines in $\mathbb{P}^2(\mathbb{F}_{q^N})$. We define $p_k(C)$ to be the limit of $(p_k^N(C))$ if it exists.

Theorem (M, Gallet-Schicho)

Let C be a geometrically irreducible plane algebraic curve of degree d over \mathbb{F}_q , where q is a prime power. Then the limit $p_k(C)$ exists for $0 \le k \le d$. Furthermore,

$$p_0(C) + p_1(C) + \cdots + p_d(C) = 1.$$

Definition (Simple tangency)

Let C be a geometrically irreducible curve of degree d in $\mathbb{P}^2(\overline{\mathbb{F}_q})$. We say that C has simple tangency if there exists a line $\ell \subseteq \mathbb{P}^2(\overline{\mathbb{F}_q})$ intersecting C in d-1 smooth points of C such that ℓ intersects C transversely at d-2 points and has intersection multiplicity 2 at the remaining point.

Theorem (M, Gallet-Schicho)

Let C be a geometrically irreducible plane algebraic curve of degree d over \mathbb{F}_q . Suppose that C has simple tangency. Then for every $k \in \{0, \ldots, d\}$ we have

$$p_k(C) = \sum_{s=k}^d \frac{(-1)^{k+s}}{s!} \binom{s}{k}.$$

In particular, $p_{d-1}(C) = 0$ and $p_d(C) = 1/d!$.

Incidences in higher dimension

Finally we generalize the intersection between a given curve and a random line to a given variety of dimension m in \mathbb{P}^n with a random linear subspace of codimension m.

Definition

In projective space \mathbb{P}^n , we denote $J_m = G(n-m,n)$ to be the variety of all linear subspaces of codimension m in the projective space \mathbb{P}^n , the so-called *Grassmannian*.

Definition

Let X be a geometrically irreducible variety in $\mathbb{P}^n(K)$ of dimension m. We say that X has the simple tangency property if there exist a linear subspace $\Gamma \in J_{m-1}$ such that the curve $X \cap \Gamma$ has simple tangency.

Theorem (M-Schicho)

Let X be a geometrically irreducible variety of dimension m and degree d in projective space $\mathbb{P}^n(\mathbb{F}_q)$, where q is a prime power. Suppose that X has the simple tangency property. Then for every $k \in \{0, \ldots d\}$ we have

$$p_k(X) = \sum_{s=k}^d \frac{(-1)^{k+s}}{s!} \binom{s}{k}.$$

Thank you for your attention.