Translation hyperovals and \mathbb{F}_2 -linear sets of pseudoregulus type

Jozefien D'haeseleer (joint work with Geertrui Van de Voorde) June 2019

- 1 Research question
- 2 The set of directions \mathcal{D} is a linear set

- $oldsymbol{3}$ The set $\mathcal D$ is of pseudoregulus type
- 4 Hyperoval in the André/Bruck-Bose plane $PG(2, q^k)$
- 5 Generalization Barwick and Jackson

Theorem

Consider PG(4, q), q even, q > 2. Let C be a set of q^2 affine points, called C-points and consider a set of planes called C-planes which satisfies the following:

- ► Each C-plane meets C in a q-arc.
- Any two distinct C-points lie in a unique C-plane.
- ▶ The affine points, not in C, lie on exactly one C-plane.
- ► Every plane which meets C in at least three points either meets C in exactly four points or is a C-plane.

Then there exists a regular spread S in Σ_{∞} s. t. in the ABB plane $P(S) \equiv PG(2, q^2)$, the C-points, together with two extra points on I_{∞} , form a translation hyperoval of $PG(2, q^2)$.

4 Problem

Techniques used in article Barwick and Jackson

They use

- the existence of a design, isomorphic to an affine plane, of which they later need to use the parallel classes.
- ▶ the Klein correspondence to represent lines in PG(3, q) in PG(5, q).

Both techniques cannot be extended to q^k , k > 2

4 \ Problem

Techniques used in article Barwick and Jackson

They use

- the existence of a design, isomorphic to an affine plane, of which they later need to use the parallel classes.
- ▶ the Klein correspondence to represent lines in PG(3, q) in PG(5, q).

Both techniques cannot be extended to q^k , k > 2.

Theorem

Let $\mathcal Q$ be a set of q^k affine points in $\mathsf{PG}(2k,q)$, $q=2^h$, $h\geq 2$ determining a set $\mathcal D$ of q^k-1 directions in the hyperplane at infinity $H_\infty=\mathsf{PG}(2k-1,q)$. Suppose that every line at infinity has 0,1,3 or q-1 points in common with the point set $\mathcal D$. Then

- (1) \mathcal{D} is an \mathbb{F}_2 -linear set of pseudoregulus type.
- (2) There exists a Desarguesian spread \mathcal{S} in H_{∞} such that in the André/Bruck-Bose plane $\mathcal{P}(\mathcal{S}) \cong \mathsf{PG}(2,q^k)$, the points of \mathcal{Q} together with 2 extra points on ℓ_{∞} form a translation hyperoval in $\mathsf{PG}(2,q^k)$.

- 1 Research question
- **2** The set of directions \mathcal{D} is a linear set

- $oldsymbol{3}$ The set $\mathcal D$ is of pseudoregulus type
- 4 Hyperoval in the André/Bruck-Bose plane $PG(2, q^k)$

5 Generalization Barwick and Jackson

7 \mathcal{D} is a linear set

Lemma

Let $P_0, P_1, P_2 \in \mathcal{Q}$ so that $P_1'P_2'$ is a 3-secant to \mathcal{D} , then the plane in PG(2kh, 2) spanned by $\tilde{P_0}$, $\tilde{P_1}$ and $\tilde{P_2}$ is contained in $\tilde{\mathcal{Q}}$.

\mathcal{D} is a linear set

Proof by Lemma 3 and induction argument.

- 1 Research question
- 2 The set of directions \mathcal{D} is a linear set

- $oldsymbol{3}$ The set ${\mathcal D}$ is of pseudoregulus type
- 4 Hyperoval in the André/Bruck-Bose plane $PG(2, q^k)$

5 Generalization Barwick and Jackson

Definition

Let S be a scattered \mathbb{F}_q -linear set of $PG(2k-1,2^h)$ of rank kh, $h,k\geq 2$. We say that S is of pseudoregulus type if

1. there exist $m = \frac{2^{hk}-1}{2^h-1}$ pairwise disjoint lines of $PG(2k-1,2^h)$, say s_1,s_2,\ldots,s_m , such that

$$|S \cap s_i| = 2^h - 1 \quad \forall i = 1, \ldots, m,$$

2. there exist exactly two (k-1)-dimensional subspaces T_1 and T_2 of $PG(2k-1,2^h)$ disjoint from S such that $T_i \cap s_i \neq \emptyset$ for each $i=1,\ldots,m$ and j=1,2.

- 1 Research question
- 2 The set of directions \mathcal{D} is a linear set

- 3 The set $\mathcal D$ is of pseudoregulus type
- 4 Hyperoval in the André/Bruck-Bose plane $PG(2, q^k)$
- 5 Generalization Barwick and Jackson

11 Construction of (k-1)-spread in H_{∞}

Lemma

There exists a Desarguesian (k-1)-spread S in PG(2k-1,q), so that

- $ightharpoonup T_1, T_2 \in \mathcal{S}$,
- lacktriangle every other element of ${\mathcal S}$ has one point in common with ${\mathcal D}$.

12 Hyperoval in $PG(2, q^k)$

Theorem

The set Q, together with T_1 and T_2 , defines a translation hyperoval in $\mathcal{P}(S) \cong \mathsf{PG}(2,q^k)$.

13 Other direction

The set of affine points of a translation hyperoval in PG(2, q^k), $q = 2^h$, $k \ge 2$.

ABB construction

Set \mathcal{Q} of q^k affine points in PG(2k,q) whose set of determined directions \mathcal{D} is an \mathbb{F}_2 -linear set of pseudoregulus type.

- 1 Research question
- 2 The set of directions \mathcal{D} is a linear set

- 3 The set $\mathcal D$ is of pseudoregulus type
- 4) Hyperoval in the André/Bruck-Bose plane $PG(2, q^k)$
- 5 Generalization Barwick and Jackson

15 Generalization Barwick and Jackson

Theorem

Consider PG(2k, q), q even, q > 2. Let C be a set of q^k affine points, called C-points and consider a set of planes called C-planes which satisfies the following:

- $(\mathsf{A1})$ Each $\mathcal C$ -plane meets $\mathcal C$ in a q-arc.
- (A2) Any two distinct C-points lie in a unique C-plane.
- (A3) The affine points that are not in C lie on exactly one C-plane.
- (A4) Every plane which meets C in at least 3 points either meets C in 4 points or is a C-plane.

Then there exists a Desarguesian spread S in Σ such that in the Bruck-Bose plane $\mathcal{P}(S) \cong \mathsf{PG}(2,q^k)$, the C-points, together with 2 extra points on ℓ_{∞} form a translation hyperoval in $\mathsf{PG}(2,q^k)$.

Thank you very much for your attention.