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Preliminaries1

The code Cn−1(n, q)
Vector space over Fp spanned by the rows of the incidence matrix
of hyperplanes and points in PG(n, q). Vectors = ‘code words’.
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1 0 0 1 1 0 0
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0 0 1 0 1 1 0
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Preliminaries1

The code Cn−1(n, q)
Vector space over Fp spanned by the hyperplanes as 0-1 incidence
functions of the point set of PG(n, q). Functions = ‘code words’.
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Known results in the plane: C1(2,q)2
Small weight code words ≈ few hyperplanes (= lines)?

Characterised up till wt(c) 6 4q− 22 (Szőnyi & Weiner):

w
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t

wt(c) = q + 1
α

wt(c) = 2q (+1)
α−α α

β

wt(c) = 3q− 3

wt(c) = 3q− 2

?

?

p = 2
1 1

1

p 6= 2
−α α

α

wt(c) = 3q (±1) −α α

β

wt(c)= 3q− 1

γ α

β

wt(c)= 3q

α

β
−α− β

wt(c)= 3q

α

β
γ

wt(c)= 3q + 1

wt(c)6 max{3q + 1, 4q− 22}
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Known results in the plane: C1(2,q)2
An ‘odd’ code word for q = p (Bagchi; De Boeck & Vandendriessche):

?

q prime

X0 = 0

X1 = 0

X0 = X1

(0, 1, a)

(1, 0, b)

(1, 1, c)

a

b0

−c

0−b

−b

(0, 0, 1) (0, 1, 0)

(1, 0, 0)
(1, 1, 0)

Proposition
I wt(c) = 3q− 3, every (2/3)-secant→ α+ β (+ γ) = 0.

I wt(c) = 3q− 2, every (2/3)-secant→ α+ β (+ γ) 6= 0.
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We’ll focus
on this bit



Known results in general: Cn−1(n,q)3

Smallest weight code words of Cn−1(n, q): generally known.

Second smallest weight:
recently characterised (Polverino & Zullo).

w
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wt(c) = qn−1 + · · ·+ q + 1

[n]

[n− 1]

wt(c) = 2qn−1

[n]

[n− 1] [n− 1]

Our result: classification of next weights

wt(c) . 4qn−1 −√8q · qn−2

q prime

π

[n− 3]

κ
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A quiet moment to think things through4

First result: classification of the third smallest weight

wt(c) = 2qn−1 + · · ·+ q + 1

[n]

[n− 1] [n− 1]

for all c with 2qn−1 < wt(c) . 3qn−1 − 6qn−2.

And further…?

I ‘Weird’ code word c in plane π (for q = p prime).
I Chose a disjoint (n− 3)-space κ.

If c =
∑

i αili , then c′ :=
∑

i αi〈li, κ〉 is a
linear combination of hyperplanes;
wt(c′) = 3pn−1 − 3pn−2. q prime

π

[n− 3]

κ
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Part 1 of proof: lines are key5

Lemma
All lines intersect supp(c) in at most 3 or in at least q − 1 points.

I Take an m-secant s. (4 6 m 6 q − 2)
I All planes through s are uncharacterised.
I We get a lower bound onm.
I Take a plane through s

(
M points of supp(c)

)
.

I Many j-secants in plane. (4 6 j)
I We get a lower bound onM.

m >
(4q − 21)θn−2 − wt(c)

θn−2 − 1
wt(c) >

(
1
2
j(j+ 1)− j

)
θn−2 + j

wt(c) >
(
4q−

√
8q−

33
2

)
qn−2
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Part 2 of proof: classifying planes6
To simplify things, we consider a code word c ∈ C2(3, p), with

2q2 + q + 1 <wt(c) 6 4q2 −
√
8q√q− 33

2 q

I There exists a 3-secant.

I The planes containing a
3-secant…

? … are all characterized.

? … are all of the same green type, or…
? … can be divided into two types:

a green type and another type.
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Results & further research8

Our result: all small code words are cones

If:
I Prime power q > 17, q /∈ {25, 27, 29, 31, 32, 49, 121}.
I Code word c ∈ Cn−1(n, q),

wt(c) 6
(
4q−

√
8q−

33
2

)
qn−2

I Slightly smaller bound if q ∈ {7, 11, 13, 17, 29, 31, 32, 121}.

Then supp(c) correspond to a cone with a
(n− 3)-dimensional vertex and a characterized
plane as base.

q prime

π

[n− 3]

κ

arXiv:1905.04978
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Results & further research8

Szőnyi & Weiner: the plane (q = ph, h > 2, q > 27)

Code words of weight lower than (p−1)(p−4)(p2+1)
2p−1 , when h = 2,

(b√qc+ 1)(q + 1− b√qc), when h > 2,

correspond to linear combinations of exactly
⌈wt(c)

q+1

⌉
lines.

Our result: further classification (q = ph, h > 2, q > 27)

Code words up to weight
(⌊ 1

2n−1
√
q
⌋
− 9

4

)
θn−1, when h = 2,(⌊ 1

2n−2
√
q
⌋
− 1
)
θn−1, when h > 2,

correspond to linear combinations of exactly
⌈wt(c)
θn−1

⌉
hyperplanes.
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The code of j- and k-spaces

I Vector space over Fp spanned by k-spaces as 0-1 incidence
functions of the set of j-spaces in PG(n, q).

I Only minimum weight is known
([k+1

j+1

]
q

)
.

I Our results: characterised approx. all weights < 3qk−j
[k
j

]
q
.

I Joint work with S. Adriaensen.

‘An Investigation into Small Weight Code Words
of Projective Geometric Codes’

Sam Adriaensen
Today - 13:50
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